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1. Introduction and Formulation of the Problem

Our concerns in this paper is to study the problem of minimizing the functionalJ :

J (z1, ..., zl) =
∫ 1

0

∫
Q

l∑
k=1

λk(t, x)hk(z
k(t, x))dxdt (1)

among all the integrable functionszk : [0,1] ×Q→ IRn+, k = 1, ..., l, satisfying
the following constraints: for almost allx ∈ Q, everyk = 1, ..., l;∫ t

0
λk(s, x)〈zk(s, x), νk〉ds =

∫ t

0
λk(s, x)

n∑
j=1

νkj z
k
j (s, x)ds > gk(t, x),

for all t ∈ ]0,1[
(2)

∫ 1

0
λk(t, x)ν

k
j z
k
j (t, x)dt = f kj (x), j = 1, ..., n, (3)

where, fork = 1, ..., l, zk = (zk1, ..., zkn); Q is the closed rectangle5m
i=1 [ai, bi] ⊂

IRm; gk : ]0,1[×Q → ]0,+∞[ is a continuous function;f kj : Q → ]0,+∞[
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being a positiveL∞-function,λk : [0,1] ×Q→ ]0,+∞[ a continuous function
andνk a non-null vector inIRn. We denote byZ the set of functionsz = (z1, ..., zl)

with eachzk : [0,1] × Q → IRn+ being an integrable function satisfying (2) and
(3).

One of the economic interpretation of our formulation deals with the invest-
igation of markets with a continuum of traders (given by the interval[0,1]) in
an economy with production. To simplify our interpretation, takem = 1. Then,
zkj (t, x) is the amount of the commodityj to be bought (produced) by the tradert
at timex in the placek. Thus, the integral in (1) gives the total expenditure (cost) of
the overall coalition under the commodity-assignmentz = (z1, ..., zl). Each of the
positive continuous functionλk appearing in (1), stands for a subjective discount
function associated to the placek, whereas in (2) and (3)λkνkj means a non zero
rate of interest applied to the commodityj in the placek. The real-valued function
gk(t, x), which is assumed to be known, is referred as the total commodity bundle
required by a 100t per cent of the total coalition[0,1] at timex in the placek,
whereas the total amount of the single commodityj required by the total coalition
at timex in the placek is given byf kj (x). Certainly, the following compatibility
condition has to be satisfied(k = 1, ..., l):

n∑
j=1

f kj (x) > lim sup
t→1−

gk(t, x), a.e. x ∈ Q.

Under the previous interpretation, inequality (2) and equality (3) have obvious
meaning. Then, the problem is to determine an optimal purchase program at min-
imal cost satisfying the requirements given by (2) and (3).

By recalling that a continuum of traders seems to be more appropiate to describe
mathematically the intuitive notion of perfect competition (see [6, 7]), one could
think that the appearance of finite places(k = 1, ..., m) is in contraposition with
this and therefore our model paradoxically would not be well-written. However,
our formulation is more general than appear in this context, since it also admits
a continuum for the number of places instead of a finite number. This is obtained
simply by adding one more component to the variablex and integrate with re-
spect to it. Certainly, this is always possible since there is no restriction for the
dimension ofx. In any case, our formulation may be considered as a mixed model
allowing any finite number of economic parameters (e.g. prices, time, strategies,
etc.) varying continuously, and possibly an additional parameter taking values in a
finite set.

The main goal of this paper is to prove the existence of optimal solutions to the
problem

min
z∈Z

∫ 1

0

∫
Q

l∑
k=1

λk(t, x)hk(z
k(t, x))dxdt (P)

without any convexity assumption on the functionshk.
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If we drop the dependence of the parameterx and the constraint (2), a more
general integral than the one considered here has been studied in [17]. In fact, in
this case, givenf kj (being a constant), the problem reduces to prove the exactness
of the continuous version of the inf-convolution operator (see [17]), and this is
done by imposing a superlinear growth condition on the integrand. The novelty of
our formulation lies on the possible dependence of any other parameterx and a
constraint of the form (2).

The paper is organized as follows. In Section 2, we recall a result recently
proved in [12] within the framework of the Calculus of Variations. Such a result
(Lemma 2.1), being optimal in the sense described in Remark 2.2 below, may be
considered as one of Liapunov-type but with an additional ‘unilateral’ condition
(see(ii) in Lemma 2.1), which is the novelty. This version is close to the one given
in Theorem 2.1 of [2] except for our unilateral condition and extends Lemma 2.2
in [1]. In Section 3, under very mild assumptions on the data, which are discussed
as well, we state the theorem ensuring the existence of solutions to problem(P ).
Its proof together with a possible extension are presented in Section 4.

Related problems can be found in (alphabetical order) [2, 3, 8, 9, 18]. All of
them consider maximization problems and therefore the concavity notion is used
instead of the convexity, besides a totally different assumption on the growth of
the integrands. Problems as those discussed in the preceding papers will be treated
elsewhere [13]. A class of problems lacking of classical solutions is studied in [4].

1. A Preliminary Lemma

For the basic definitions about set-valued analysis used here and hereafter, we refer
to the book [5, Chapter VIII]. In particular, measurability of set-valued mapsT :
Y ⊂ IRm→ IRn, is with respect to Lebesgue measure.

In what follows, we use the following notations:̃Q
.= [0,1] ×Q, whereQ =∏m

i=1[ai, bi] ⊂ IRm and [ai, bi] denotes the real interval with end pointsai, bi ,
ai < bi . Given a setK ⊂ IRn, we denote by coK the convex hull ofK and by
extrK the set of extreme points ofK whenever it is convex. The dimension of a
convex setK refers to the dimension of the smallest affine space containingK and
〈·, ·〉 stands for the scalar product inIRn. The previous notions can be found in [16].

The next result is a slight variant of Lemma 2.3 in [12]. Here we add the function
λ. The proof is presented just for the convenience of the reader.

LEMMA 2.1. ([12]) Let S ⊂ IRn be ak-dimensional relative open simplex with
verticesc0, c1, ..., ck ; E ⊂ Q̃ ⊂ IRm+1 be a measurable set;v : E → S be a
measurable function;λ : Q̃ →]0,+∞[ be a strictly positive continuous function
and letν 6= 0 be a fixed vector inIRn. Then, there exists a measurable function
w : E→ extrS such that:
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(i)
∫ 1

0 λ(t, x)w(t, x)χE(t, x)dt =
∫ 1

0 λ(t, x)v(t, x)χE(t, x)dt for almost allx ∈
Q;

(ii) for every t ∈ ]0,1[, we have

∫ t

0
λ(r, x)〈w(r, x), ν〉χE(r, x)dr >

∫ t

0
λ(r, x)〈v(r, x), ν〉χE(r, x)dr

for almost allx ∈ Q. (4)

Proof.A measurable selection theorem allows us to writev(t, x) =∑k
0pi(t, x)ci

for suitable measurable functionspi : E → [0,1] satisfying
∑k

0pi ≡ 1. Setting
αi = 〈ci, ν〉 for i = 0, ..., k, we can assumeα0 > α1 > ... > αk.

We claim that there exist measurable functionsδi : Q → [0,1], i = 1, ..., k,
such that 06 δi 6 δi+1 and, by puttingδ0 ≡ 0, δk+1 ≡ 1, one has∫ δi+1(x)

δi (x)

λ(t, x)χE(t, x)dt

=
∫ 1

0
λ(t, x)pi(t, x)χE(t, x)dt for almost allx ∈ Q.

(5)

To prove (5), we proceed recursevely as follows. Assumingδi is known for i =
0, ..., j , we will defineδj+1. Let us consider the function

ψ(t, x) =
∫ t

0
λ(r, x)χE(r, x)dr −

∫ 1

0
λ(r, x)

j∑
i=0

pi(r, x)χE(r, x)dr.

This function is such that:t 7→ ψ(t, x) is continuous for a.ex; x 7→ ψ(t, x) is
measurable for everyt ; ψ(1, x) > 0 since

∑k
0pi ≡ 1 and,

ψ(δj (x), x) =
∫ δj (x)

0
λ(r, x)χE(r, x)dr −

j∑
i=0

∫ 1

0
λ(r, x)pi(r, x)χE(r, x)dr

= −
∫ 1

0
λ(r, x)pj (r, x)χE(r, x)dr 6 0. (6)

Thus, by Proposition 2.2 in [12] or Proposition 3.1.2 in [10], the set-valued map
T (x) = {t ∈ [δj (x), T ] : ψ(t, x) = 0}, x ∈ Q, is measurable and then admits
at least a measurable selectionδj+1 : Q → [0, T ] (see Theorem 8.1.3 in [5] for
instance). In particular, we haveδj+1(x) > δj (x) and∫ δj+1(x)

δj (x)

λ(t, x)χE(t, x)dt

=
∫ 1

0
λ(t, x)pj (t, x)χE(t, x)dt for almost allx ∈ Q.

(7)
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This proves claim (5). A desired function satisfying the requirements of the lemma
is given by

w(t, x) =
k∑
i=0

ciχEi (x)∩E(t, x) =
k∑
i=0

ciχEi∩E(t, x),

whereEi(x) = [δi(x), δi+1(x)[×Q, for i = 0, ..., k − 1, andEk(x) = [δk(x),1] ×
Q. On the other hand,Ei = hypδi+1\hypδi for i = 0, ..., k, here hypδi means the
hypograph of the functionδi defined by hypδi

.= {(x, y) ∈ Q × [0,1] : δi(x) >
y}.

Let us now prove Part(i).∫ 1

0
λ(t, x)w(t, x)χE(t, x)dt =

∫ 1

0
λ

k∑
i=0

ciχEi(x)∩E(t, x)dt

=
k∑
i=0

ci

∫ δi+1(x)

δi(x)

λχE(t, x)dλ(t)

=
k∑
i=0

ci

∫ 1

0
λpi(t, x)χE(t, x)dt

=
∫ 1

0
λ(t, x)v(t, x)χE(t, x)dt. (8)

It only remains to prove Part(ii). Fix anyx ∈ Q and t such thatδj (x) 6 t 6
δj+1(x) for j = 0, ..., k. Then∫ t

0
λ(r, x)〈w(r, x), ν〉χE(r, x)dr =

∫ t

0
λ(r, x)

k∑
i=0

αiχEi(x)∩E(r, x)dr

=
j−1∑
i=0

αi

∫ δi+1(x)

δi (x)

λ(r, x)χE(r, x)dr +
∫ x

δj (x)

αjλ(r, x)χE(r, x)dr

=
j−1∑
i=0

αi

∫ 1

0
λ(r, x)pi(r, x)χE(r, x)dr +

∫ t

δj (x)

αjλ(r, x)χE(r, x)dr

=
j−1∑
i=0

αi

∫ t

0
λpiχE(r, x)dr+

j−1∑
i=0

αi

∫ 1

t

λpiχE(r, x)dr+
∫ t

δj (x)

αjλχE(r, x)dr

>
j−1∑
i=0

αi

∫ t

0
λpiχE(r, x)dr + αj

∫ 1

t

(1−
k∑
i=j

pi)λχE(r, x)dr

+
∫ t

δj (x)

αjλχE(r, x)dr
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=
j−1∑
i=0

αi

∫ t

0
λpiχE(r, x)dr+αj

∫ 1

δj (x)

λχE(r, x)dr−αj
∫ 1

t

λ

k∑
i=j

piχE(r, x)dr

=
j−1∑
i=0

αi

∫ t

0
λ(r, x)pi(r, x)χE(r, x)dr +

k∑
i=j

αj

∫ t

0
λ(r, x)pi(r, x)χE(r, x)dr

>
∫ t

0
λ(r, x)

j−1∑
i=0

αipi(r, x)χE(r, x)dr +
∫ t

0
λ(r, x)

k∑
i=j

αipi(r, x)χE(r, x)dr

=
∫ t

0
λ(r, x)

k∑
i=0

αipi(r, x)χE(r, x)dr =
∫ t

0
λ(r, x)〈v(r, x), ν〉χE(r, x)dr.

(9)

The latter proves(ii) and the proof of the lemma is concluded. 2
REMARK 2.2. ([12]) One can also obtain the existence of another functionw

satisfying(i) and(ii) with the reverse inequality. This is done by ordering in the
opposite sense theαi, i = 0, ..., k introduced at the beginning of the proof of the
lemma. The following is devoted to show that the results of Lemma 2.1 are in some
sense optimal. On one hand, one cannot expect that, in addition to(i) and(ii) in
Lemma 2.1, also holds an analogue to(i) where the integral is respect to another
variable. In other words, assume for simplicity thatn = 1,m = 1, a1 = 0, b1 = 1,
E = Q̃ = [0,1] × [0,1] ⊂ IR2, λ = 1 andν = 1. Then, one cannot expect that
besides satisfying(i) and(ii) in Lemma 2.1, one also has
(iii)

∫ 1
0 w(t, x)dx =

∫ 1
0 v(t, x)dx for almost allt ∈ [0,1].

On the other hand, the result in the preceding lemma cannot be extended to
the case when the setS depends explicitly, at least, on the variablet . In fact, take
n = 2, m = 1, λ = 1, E = Q̃ = [0,1] × [0,1], ν = (0,1), S to be the open
interval { ρ(1, t) : ρ ∈ ]0,1[ } andv(t, x) = 1

2(1, t). Then, it is not difficult to
show that there is no functionw taking values in{(0,0), (1, t)} such that(i) and
(ii) continue to be valid. This example was taken from [1].

Finally, it is not hard to realize that, in general, one cannot replace the interval
[0, t] in the integral in(ii) for any interval of the form[t1, t2] contained in[0,1].

2. Statement of the Theorem and Discussion of the Assumptions

Given any functionh : IRn → IR ∪ {+∞}, we denote byh∗∗ the convexified
function ofh defined as the greatest convex l.s.c. function not greater thanh (see
[15]), and byIRn+ the nonnegative orthant{ξ ∈ IRn : ξj > 0, j = 1, ..., n}. For
z = (z1, ..., zl) ∈ Z, we use the norm||z|| = ∑l

k=1 ||zk||L1(Q̃,IRn). We recall that

Q̃ = [0,1] ×Q.
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We first shall consider the following hypothesis

HYPOTHESIS (H): For everyk = 1, ..., l, j = 1, ..., n, the functionf kj : Q
→ ]0,+∞[ is inL∞(Q, IR), gk : ]0,1[×Q→ ]0,+∞[ is a continuous function
andhk : IRn→ [0,+∞] is such thathk(ξ) = +∞ if and only if ξ 6∈ IRn+ and

− (h1) hk is a lower semicontinuous (and therefore a Borel) function;
− (h2) there exist: a convex lower semicontinuous monotonic functionψ :
[0,+∞[→ IR+ and a constantβ ∈ IR such that, for allξ ∈ IRn+,

hk(ξ) > ψ(|ξ |)− β where lim
r→+∞

ψ(r)

r
= +∞;

− (h3) settingCk = {ξ ∈ IRn+ : h∗∗k (ξ) < hk(ξ)}, we impose thatCk ⊂⋃i∈Ik S
k
i

whereIk is a countable set and eachSki is a relative open (bounded) simplex
subset ofIRn+ such thath∗∗k = hk on extrSki andh∗∗k is affine on everySki . Here
{Ski } are supposed to be disjoint. No assumption ifn = 1.

Note that we admit as a functionhk, the indicator function of a closed set, i.e.,
functions of the formiC(ξ) = 0 if ξ ∈ C andiC(ξ) = +∞ otherwise for a given
closed setC.

We are interested in the following minimization problem

min
z∈Z

∫ 1

0

∫
Q

l∑
k=1

λk(t, x)hk(z
k(t, x))dxdt (P)

whereZ is the set of all integrable functionsz = (z1, ..., zl) satisfying (2) and (3)
defined in Section 1.

We now are in a position to state the main result.

THEOREM.For k = 1, ..., l, let νk be inIRn, λk be a continuous positive function
in Q̃ = [0,1] × Q and letf k, hk satisfy hypothesis (H) above. If there exists an
admisible programz ∈ Z for which the cost functionalJ has a finite value and if,
in addition, the compatibility condition is satisfied

n∑
j=1

f kj (x) > lim sup
t→1−

gk(t, x), a.e. x ∈ Q,

then problem(P ) admits at least a solution inZ.

Before going on, let us discuss briefly the role of each assumption appearing in
(H) in the proof of our existence theorem. We start by considering the convexified
problem(P ∗∗) (same as(P ) with h∗∗k instead ofhk) which will admit a solution
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by the Direct method of the Calculus of Variations: every minimizing sequence,
because of(h2), has a weakly convergent subsequence inL1. This fact together
with the sequential weak lower semicontinuity of the cost functional associated to
(P ∗∗), the limit function, saỹz, will be a solution to problem(P ∗∗). Now, the goal
is to modify each̃zk in those points(t, x) for which zk(t, x) locates in the region
wherehk 6= h∗∗k . Assume for the moment thatn = 1. Then, it is known that(h2)

and the lower semicontinuity ofhk imply that{
ξ ∈ IR+ : h∗∗k (ξ) < hk(ξ)

}
=
⋃
i∈I
]ci, di[, (10)

where such intervals (depending onk) are supposed to be disjoint,−∞ < ci <

di < +∞, and wherei runs over a countable setI depending onk. In addition,
one also hash∗∗k (ci) = hk(ci), h∗∗k (di) = hk(di). We reason for everyk and for
everyi ∈ I in the following manner. Looking at the points(t, x) for which z̃k(t, x)
belong to the interval]ci, di[, we modifyz̃k on this set by forcing to take the values
in the extreme points of the interval without altering the value of the cost integral.
This is done by using Lemma 2.1.

Each interval]ci, di[ (an open bounded simplex inIR) plays the role of the
simplexSki in assumption(h3). Unfortunately, in casen > 1 the representation
(10) where each interval]ci, di[ is substituted by a simplexSi is not a consequence
of (h2). To see this, assumel = 1 and take as a function̄h the minimum of the
parabolas 2t2 andt2+1, and then consider the functionh(ξ) = h̄(|ξ |) for ξ ∈ IR2+.
Here|ξ | denotes the Euclidean norm inIR2. On the other hand, the advantage of
putting an inclusion instead of an equality in(h3) is exhibited by the next example.
Assume againl = 1 and take an even function̄h satisfiying, besides(h2), the
following properties: there are 0< t1 < t2 such that, fori = 1,2, h̄(t) = h̄(ti) =
h̄∗∗(ti) if 0 6 t 6 t1; h̄(t1) < h̄(t) if t1 < t < t2 andh̄(t) = h̄∗∗(t) for all t > t2

with h
∗∗′
+(t2) > 0. Now, take the functionh given byh(ξ) = h̄(|ξ |), where|ξ |

stands for the Euclidean norm. Thus,h∗∗(ξ) = h̄∗∗(|ξ |) and

K
.=
{
ξ ∈ IRn+ : h̄∗∗(|ξ |) < h̄(|ξ |)

}
=
{
ξ ∈ IRn+ : t1 < |ξ | < t2

}
.

Thus,K is not a countable union of simplices but satisfies the inclusion assumption
required in(h3) as the proposition in next section shows.

3. Proof of the Theorem

(a) We first consider the convexified problem associated to(P ):

min
z∈Z

∫ 1

0

∫
Q

l∑
k=1

λk(t, x)h
∗∗
k (z

k(t, x))dxdt. (P∗∗)

Because of the assumptions on the integrand, the optimal value min(P∗∗) is fi-
nite. Take any minimizing sequence(zp) in Z wherezp = (z1,p, ..., zl,p). By the
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continuity of everyλk on the compact set̃Q, we can assume that all of them are
bounded from below by a positive constantλ. Thus by assumption(h2) and the
de la Vallée-Poussin criterion (see [11, Chapter VII, Theorem 1.3] for instance)
the sequence(zk,p) is equi-integrable fork = 1, ..., l. We now apply the Dunford-
Pettis compactness criterion (same reference as before) to conclude that there exists
a subsequence, still indexed byp, such thatzk,p ⇀ z̃k in L1(Q̃, IRn). This implies
z̃k > 0 for k = 1, ..., l, and, in particular for everyt ∈ ]0,1[ every Borel set
E ⊂ Q, that∫ t

0

∫
E

λk(s, y)〈zk,p(s, y), νk〉dyds

→
∫ t

0

∫
E

λk(s, y)〈z̃k(s, y), νk〉dyds asp→+∞.

Hence, since the sequencezp = (z1,p, ..., zl,p) is inZ, one obtains for allt ∈ ]0,1[,
all Borel setE ⊂ Q:∫

E

gk(t, y)dy 6
∫ t

0

∫
E

λk(s, y)〈z̃k(s, y), νk〉dyds.

Settingu(t, y) = ∫ t0 λk(s, y)〈z̃k(s, y), νk〉dyds−gk(t, y), the preceding inequality
becomes

∫
E
u(t, y)dy > 0 for all t ∈ ]0,1[, all Borel setE ⊂ Q. Thus, for

every t ∈ ]0,1[ there exists a null setN(t) ⊂ Q such thatu(t, y) > 0 for all
y ∈ Q\N(t). It turns out thatu(t, y) > 0 for all t ∈ Q1, for all y ∈ Q\N with
N =⋃t∈Q1

N(t) (independent oft) being a null set, whereQ1 is the set of rational
numbers in]0,1[. Sinceu(·, y) is continuous, the latter implies thatu(t, y) > 0
for all t ∈ ]0,1[, a.e.y ∈ Q. It follows that for allt ∈ ]0,1[ (k = 1, ..., l)∫ t

0
λk(s, x)〈z̃k(s, x), νk〉ds > gk(t, x), a.e. x ∈ Q.

Consequentlỹz = (z̃1, ..., z̃l) satisfies condition (2). Let us prove the second con-
dition (3). Letx be a Lebesgue density point (see [14, Chapter 3] for instance) in
the interior ofQ for the functionsf k and

∫ 1
0 λk(s, ·)z̃kj (s, ·)ds, k = 1, ..., l, j =

1, ..., n. The weak convergence ofzk,p to z̃k in L1(Q̃, IRn), as before, implies that
(k = 1, ..., l, j = 1, ..., n)∫ 1

0

∫
B(x,ε)

λk(s, y)z
k,p

j (s, y)dyds

→
∫ 1

0

∫
B(x,ε)

λk(s, y)z̃
k
j (s, y)dyds asp→+∞.

Here,B(x, ε) is the open ball centred atx and radiusε sufficiently small. By using
the Tonelli-Fubini theorem and the facts thatzp is inZ and thatx is a density point
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for the involved functions, we conclude that∫ 1

0
λk(s, x)ν

k
j z̃
k
j (s, x)ds = f kj (x) for a.e. x ∈ Q (k = 1, ..., l, j = 1, ..., n),

since the complement of the set of Lebesgue points has measure zero [14]. Thus,
z̃ = (z̃1, ..., z̃l) is in Z and clearly it is a solution to problem(P ∗∗) because of
the convexity and lower semicontinuity conditions ofh∗∗k (see [11, Chapter VIII,
Theorem 2.1]) andλk > λ > 0.
(b) Let z̃ ∈ Z, z̃ = (z̃1, ..., z̃l) be any solution to problem(P ∗∗). For every

k = 1, ..., l, we set for everyi ∈ Ik,Qk
i = {(t, x) ∈ Q̃ : z̃k(t, x) ∈ Ski }, and apply

Lemma 2.1 to obtain a measurable functionwki taking values in extrSki onQk
i , such

that, for everyi ∈ Ik:

(i)
∫ 1

0 λk(t, x)w
k
i (t, x)χQki

(t, x)dt = ∫ 1
0 λk(t, x)z̃

k(t, x)χQki
(t, x)dt for a.e.x in

Q and
(ii) for every t ∈ ]0,1[, we have∫ t

0
λk(s, x)〈wki (s, x), νk〉χQki (s, x)ds

>
∫ t

0
λk(s, x)〈z̃k(s, x), νk〉χEki (s, x)ds for a.e. x ∈ Q. (11)

PutQk
0 = Q̃ \

⋃
i Q

k
i , and definezk : Q̃→ IRn by

zk(t, x) = z̃k(t, x)χQk0(t, x) +
∑
i∈Ik

wki (t, x)χQki
(t, x).

Clearly, this function is measurable and obviously is integrable ifIk is a finite set.
In caseIk is numerable, we reason as follows. Taking into account(h2) and the fact
that ∫ 1

0
λk(t, x)h

∗∗
k (w

k
i (t, x))χQki

(t, x)dt =∫ 1

0
λk(t, x)h

∗∗
k (z̃

k(t, x))χQki
(t, x)dt for a.e. x in Q, (12)

which is a consequence of the affine linearity ofh∗∗k on everySki , we have for every
m ∈ IN ,

λ

∫
Q̃

ψ(|z̃k|χQk0 +
∑
i6m
|wki |χQki ) 6

∑
i6m

∫
Qki

λk(h
∗∗
k (z̃

k)+ β)

6
∫
Q̃

λk(h
∗∗
k (z̃

k)+ β),
(13)
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with λ > 0. Inequality (13) implies that the sequence of functions given byz̃kχQk0
+∑

i6m w
k
i χQki

,m ∈ IN is equi-integrable. Thus, the Vitali convergence theorem [11,

Chapter VIII, Corollary 1.3] asserts thatzk is in L1(Q̃, IRn). Moreover, it follows
that ∫ 1

0
λk(t, x)z

k(t, x)dt =
∫ 1

0
λk(t, x)z̃

k(t, x)dt for a.e. x ∈ Q (14)

and for everyt ∈ ]0,1[∫ t

0
λk(s, x)〈zk(s, x), νk〉ds >

∫ t

0
λk(s, x)〈z̃k(s, x), νk〉ds for a.e. x ∈ Q.

Thus,z = (z1, ..., zl) is in Z. On the other hand, by recalling thath∗∗k is affine on
eachSki and sincehk = h∗∗k on each extrSki , (14) implies∫ 1

0

∫
Q

λk(t, x)hk(z
k(t, x))dxdt =

∫ 1

0

∫
Q

λk(t, x)h
∗∗
k (z̃

k(t, x))dxdt.

Hence,z = (z1, ..., zl) is a solution to problem(P ) sincez̃ is a solution to(P ∗∗),
λk > λ > 0 andh∗∗k > hk. Notice that we also conclude that min(P ∗∗) =
min (P ). 2

Looking at Part(a) of the proof of our theorem, one concludes that, in casehk
is already a convex function for everyk = 1, ..., l, the constraint given by (2) may
be taken as an equality. We single out this result in the following corollary.

COROLLARY. In addition to the assumptions of the previous theorem (without
(h3)) assume also thathk is convex for everyk = 1, ..., l. Then the problem of
minimizing the integral

J (z1, ..., zl) =
∫ 1

0

∫
Q

l∑
k=1

λk(t, x)hk(z
k(t, x))dxdt,

among all the integrable functionszk : [0,1] ×Q→ IRn+, k = 1, ..., l, satisfying
the following constraints: for almost allx ∈ Q, everyk = 1, ..., l;∫ t

0
λk(s, x)〈νk, zk(s, x)〉ds = gk(t, x), for all t ∈ ]0,1[,

∫ 1

0
λk(t, x)ν

k
j z
k
j (t, x)dt = f kj (x), j = 1, ..., n,
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admits at least one solution.

REMARK 4.1. By virtue of the first part of Remark 2.2, our theorem admits the
variant in which some of the constraints expressed by (2) fork = 1, ..., l, may be
in opposite sense.

The next proposition, proved in [12], implies that the interior of ak-dimensional
convex compact subsetC in IRn is the union of countably many relative open
pairwise disjoint simplices (the faces of thek-dimensional simplices inS). This
allows us to extend Lemma 2.1 to the case whenS is a convex relative open
bounded subset ofIRn, and therefore also our main theorem by substitutingSki ,
in assumption(h3), by a convex relative open bounded subset inIRn.

PROPOSITION 4.2. LetC be ann-dimensional compact convex subset ofIRn.
Then there exists a countable familyS of n-dimensional simplices such that

(i) int C ⊂ ∪{S : S ∈ S};
(ii) int S ∩ int S ′ = ∅ if S, S ′ ∈ S andS 6= S ′;
(iii) extrS ⊆ extrC for everyS ∈ S.
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