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1. Introduction and Formulation of the Problem

Our concerns in this paper is to study the problem of minimizing the functidnal
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among all the integrable function$ : [0,1] x Q — IR",k =1, ..., I, satisfying
the following constraints: for almost alle Q, everyk =1, ..., [;
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/ A (s, x)(zk(s, X), vk)ds = / Ai(s, x) vazlj-(s,x)ds > gk(t, X),
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where, fork = 1, ..., [, z* = (4§, ..., 2¥); Q is the closed rectanglB", [a;, b;] C
R™; g : 10,1[xQ — 10, +oc[ is a continuous functionf}‘ Q0 — 10, +o0[
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being a positivel. *°-function, A, : [0, 1] x Q@ — 10, +o0[ a continuous function
andv* a non-null vector inR". We denote by the set of functiong = (z%, ..., 7%
with eachzt : [0,1] x Q — IR” being an integrable function satisfying (2) and
(3).

One of the economic interpretation of our formulation deals with the invest-
igation of markets with a continuum of traders (given by the intef@all]) in
an economy with production. To simplify our interpretation, take= 1. Then,
z’;(t, x) is the amount of the commaodityto be bought (produced) by the trader
at timex in the placek. Thus, the integral in (1) gives the total expenditure (cost) of
the overall coalition under the commodity-assignmest (z%, ..., z/). Each of the
positive continuous functioi, appearing in (1), stands for a subjective discount
function associated to the plagewhereas in (2) and (3>)kvj? means a non zero
rate of interest applied to the commodityn the placet. The real-valued function
g~ (t, x), which is assumed to be known, is referred as the total commodity bundle
required by a 100per cent of the total coalitiof0, 1] at timex in the placek,
whereas the total amount of the single commoditgquired by the total coalition
at timex in the placek is given byf;‘(x). Certainly, the following compatibility
condition has to be satisfidé = 1, ..., [):

t—1-

Zf;‘(x) > limsupgh(r, x), ae x € Q.
j=1

Under the previous interpretation, inequality (2) and equality (3) have obvious
meaning. Then, the problem is to determine an optimal purchase program at min-
imal cost satisfying the requirements given by (2) and (3).

By recalling that a continuum of traders seems to be more appropiate to describe
mathematically the intuitive notion of perfect competition (see [6, 7]), one could
think that the appearance of finite plagés= 1, ..., m) is in contraposition with
this and therefore our model paradoxically would not be well-written. However,
our formulation is more general than appear in this context, since it also admits
a continuum for the number of places instead of a finite number. This is obtained
simply by adding one more component to the variablend integrate with re-
spect to it. Certainly, this is always possible since there is no restriction for the
dimension ofx. In any case, our formulation may be considered as a mixed model
allowing any finite number of economic parameters (e.g. prices, time, strategies,
etc.) varying continuously, and possibly an additional parameter taking values in a
finite set.

The main goal of this paper is to prove the existence of optimal solutions to the
problem

1 l
min / Zkk(t, X)hy (252, x))dxdt (P)
0

ez
¢ Q=1

without any convexity assumption on the functions
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If we drop the dependence of the parameteand the constraint (2), a more
general integral than the one considered here has been studied in [17]. In fact, in
this case, givelff (being a constant), the problem reduces to prove the exactness
of the continuous version of the inf-convolution operator (see [17]), and this is
done by imposing a superlinear growth condition on the integrand. The novelty of
our formulation lies on the possible dependence of any other parameied a
constraint of the form (2).

The paper is organized as follows. In Section 2, we recall a result recently
proved in [12] within the framework of the Calculus of Variations. Such a result
(Lemma 2.1), being optimal in the sense described in Remark 2.2 below, may be
considered as one of Liapunov-type but with an additional ‘unilateral’ condition
(see(ii) in Lemma 2.1), which is the novelty. This version is close to the one given
in Theorem 2.1 of [2] except for our unilateral condition and extends Lemma 2.2
in [1]. In Section 3, under very mild assumptions on the data, which are discussed
as well, we state the theorem ensuring the existence of solutions to proBlem
Its proof together with a possible extension are presented in Section 4.

Related problems can be found in (alphabetical order) [2, 3, 8, 9, 18]. All of
them consider maximization problems and therefore the concavity notion is used
instead of the convexity, besides a totally different assumption on the growth of
the integrands. Problems as those discussed in the preceding papers will be treated
elsewhere [13]. A class of problems lacking of classical solutions is studied in [4].

1. A Preliminary Lemma

For the basic definitions about set-valued analysis used here and hereafter, we refer
to the book [5, Chapter VIII]. In particular, measurability of set-valued ni&ps
Y ¢ IR™ — IR", is with respect to Lebesgue measure.
In what follows, we use the following notation® = [0, 1] x Q, whereQ =
[T/-4lai, b1 C IR™ and[q;, b;] denotes the real interval with end points b;,
a; < b;. Given a setk C IR", we denote by c&K the convex hull ofK and by
extr K the set of extreme points & whenever it is convex. The dimension of a
convex seX refers to the dimension of the smallest affine space contaikiiagd
(-, -) stands for the scalar productiR". The previous notions can be found in [16].
The next resultis a slight variant of Lemma 2.3 in [12]. Here we add the function
A. The proof is presented just for the convenience of the reader.

LEMMA 2.1. ([12]) Let S c IR" be ak-dimensional relative open simplex with
verticescg, c1, ..., cx; E C Q C IR™1! be a measurable sat;: E — S be a
measurable functior; : O — 10, +o0[ be a strictly positive continuous function
and letv # 0 be a fixed vector ifR". Then, there exists a measurable function
w : E — extr§ such that:
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() Jor(, )wt, x)xe(t, x)dt = [ A, x)v(t, x) xg (2, x)d1 for almost allx e
0;
(ii) foreveryr € ]0, 1], we have

t

//\(r,x)(w(r,x),V)XE(r,x)dr2/ A(r, x)(v(r, x), v) xg (r, x)dr
0 0
for almost allx € Q. (4)

Proof. A measurable selection theorem allows us to write x) = 2’5 pi(t, x)c;

for suitable measurable functiops : E — [0, 1] satisfyingz’g p; = 1. Setting
o; = (¢;,v)fori =0, ..., k, we can assumeg > a1 > ... > a;.

We claim that there exist measurable functiéps Q — [0,1],i = 1, ..., k,
such that 0< §; < 6;.1 and, by puttingsy = 0, 6,1 = 1, one has

8i+1(x)
/ At x) xe(t, x)dt
8 (x) (5)

1
:/ A(t, x)pi(t, x)xg (¢, x)dt for almost allx € Q.
0

To prove (5), we proceed recursevely as follows. Assundjnig known fori =
0, ..., j, we will define§; 1. Let us consider the function

t 1 J
Yt x) = f A, x)xg(r, x)dr —/ A, x) Zp,»(r, X)xg(r, x)dr.
0 0 i=0

This function is such that. — (¢, x) is continuous for a.e; x — ¥ (z, x) is
measurable for every ¥ (1, x) > 0 sincez’g p; = 1and,

8j(x) J 1
Y (8;(x), x) =/ A(r, x) xg(r, x)dr — Zf Ar, x) pi(r, x) xg (r, x)dr
0 i Y0

1
= —/ AMr, x)pj(r,x)xe(r, x)dr <O. (6)
0

Thus, by Proposition 2.2 in [12] or Proposition 3.1.2 in [10], the set-valued map
T(x) ={t € [§;(x), T]: ¥(t,x) = 0}, x € Q, is measurable and then admits
at least a measurable selectidn, : Q — [0, T'] (see Theorem 8.1.3 in [5] for
instance). In particular, we have,1(x) > §;(x) and

3j41(x)
/ M, x) xe(t, x)dt
. (7)

1
:f A(t, x)p;j(t, x)xe(t, x)dt for almost allx € Q.
0
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This proves claim (5). A desired function satisfying the requirements of the lemma
is given by

k k
w(t,x) = ZCiXE,-(x)ﬂE(t7x) = ZCiXE,-ﬂE(t7x)7
i=0 i=0

whereE; (x) = [8;(x), 8i11(x)[xQ,fori =0, ...,k — 1, andE; (x) = [ (x), 1] x
Q. On the other handy; = hypé;+1\hypsé; fori =0, ..., k, here hyps; means the
hypograph of the functiod; defined by hyp; = {(x,y) € O x [0,1] : §;(x) >

v}
Let us now prove Part).

1

k
A Z Ci XE;(onE(t, x)dt
i=0

1
/ A(t,x)w(t,x)XE(t,x)dt:f
0

k

8i41(x)
Ci / Axe(t, x)dA(t)
8

0 i (x)

i

1
Y e / wpit, X) xe (1, x)dt
i=0 Y0

=~ |l

1
= f A(t, x)v(t, x) xg(, x)dt. (8)
0

It only remains to prove Palii). Fix anyx € Q andr such thats;(x) < r <
§j+1(x) for j =0, ..., k. Then

t ¢ k
/O )“(ra -x)(w(ra x),v)XE(r,x)dr =/O )“(ra x)Z“iXE,-(x)ﬁE(rv-x)dr

i=0

j-1 3i+1(x) x
= Zai/ A, x)xe(r, x)dr —{—/ a;A(r, x) xg (r, x)dr
-0

i (x) 3 (x)

. o~

t

-1 1
Zai/ A(r, x) pi(r, x) xe (r, X)dr +/ ajA(r, x) xe (r, x)dr
0 8

i=0 7 (x)
j-1 t j-1 1 t

=) / Apixe(r, X)dr+ " a; / wpi xe (r, x)dr+ / ajhxe(r, x)dr
i=0 0 i=0 4 3 (x)

WV

j—1 t 1 k
> / Apixe(r, x)dr +a; f (L= prxe(r, x)dr
i=0 70 ! i=j

t
—I—/ arxe(r, x)dr
3j(x)
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t 1 1k
= a,-/ ApixEg(r, x)dr—{—ozj/ Axe(r, x)dr—ozj/ AZpiXE(r,x)dr
0 t

3;j(x) i=j

t k t
= a,-/ k(r,x)pi(r,x)XE(r,x)dr—I—Zozj/ A, x)pi (r, x)xe(r, x)dr
i=0 0 i=j 0
t j-1 t k
> / 2(r, ) Y e pi(r, x) xe (r, x)dr + / M(r, x) Y e pi(r, x) e (r, x)dr
0

i=0 0 i=j
r k t
= / A, x) Zaipi(r, xX)xe(r,x)dr = / A(r, x){(v(r, x), v) xe(r, x)dr.
0 i—o 0
9)
The latter provesii) and the proof of the lemma is concluded. a

REMARK 2.2. ([12]) One can also obtain the existence of another funetion
satisfying (i) and (ii) with the reverse inequality. This is done by ordering in the
opposite sense the, i = 0, ..., k introduced at the beginning of the proof of the
lemma. The following is devoted to show that the results of Lemma 2.1 are in some
sense optimal. On one hand, one cannot expect that, in addition aod (ii) in
Lemma 2.1, also holds an analogue(tpwhere the integral is respect to another
variable. In other words, assume for simplicity that 1,m = 1,a; = 0,b; = 1,

E = Q = [0,1] x [0,1] C IR? » = 1 andv = 1. Then, one cannot expect that
besides satisfying/) and(ii) in Lemma 2.1, one also has

(iii) [y w(t, x)dx = [5 v(t, x)dx for almost allz € [0, 1].

On the other hand, the result in the preceding lemma cannot be extended to
the case when the sstdepends explicitly, at least, on the variablén fact, take
n=2m=1A=1E=0Q =1[01] x[0,1], v = (0, 1), S to be the open
interval{ p(1,1) : p € 10,1 } andv(z, x) = %(1, t). Then, it is not difficult to
show that there is no functiom taking values in{(0, 0), (1, )} such that(i) and
(i1) continue to be valid. This example was taken from [1].

Finally, it is not hard to realize that, in general, one cannot replace the interval
[0, ¢] in the integral in(ii) for any interval of the formjzy, ,] contained in0, 1].

2. Statement of the Theorem and Discussion of the Assumptions

Given any functionz : IR" — IR U {400}, we denote by:** the convexified
function of 4 defined as the greatest convex l.s.c. function not greater/itiaee
[15]), and byIR", the nonnegative ortha§ € IR" : §; > 0, j = 1,...,n}. For
z = (¢4 ..., 7)) € Z, we use the norniiz|| = Y\_, 11211 25,y We recall that

Q=101 x Q.
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We first shall consider the following hypothesis

HYPOTHESIS (H): For everyc =1..,1,j=1..n,the functionf}‘ N0
— 10, +o0[isin L®(Q, IR), g* : 10, 1[><Q — ] ,+oo[ is a continuous function
andhy : IR" — [0, +o0] is such thahk(é) +oo ifand only if¢ ¢ IR" and

— (hy) hy is a lower semicontinuous (and therefore a Borel) function;
— (hyp) there exist: a convex lower semicontinuous monotonic function
[0, +00[— IRT and a constang € IR such that, for alE € IR",

B > YD) — p where lim Y

r—+4o00 r

— (ha)settingC* = {£ € IR, : h{*(§) < hi(£)}, we impose that* c ;. SF
wherel, is a countable set and eash s a relative open (bounded) simplex
subset ofR". such thak;* = h on extrSF andh}* is affine on evenyst. Here
{S¥} are supposed to be disjoint. No assumptiom # 1.

Note that we admit as a functidn,, the indicator function of a closed set, i.e.,
functions of the formc(¢) = 0if £ € C andic(§) = +oo otherwise for a given
closed seC.

We are interested in the following minimization problem

rzryzn f fQ Zkk(t x)hi (Z5(2, x))dxdt (P)

whereZ is the set of all integrable functions= (z%, ..., 7/) satisfying (2) and (3)
defined in Section 1.
We now are in a position to state the main result.

THEOREM.For k = 1, ..., [, letvk be in IR", A, be a continuous positive function
in 0 = [0,1] x Q and let f*, h, satisfy hypothesis (H) above. If there exists an
admisible prograny € Z for which the cost functional has a finite value and if,

in addition, the compatibility condition is satisfied

> fHx) > limsupgh(r. x), ae x € Q,

t—1-
then problem(P) admits at least a solution iZ.

Before going on, let us discuss briefly the role of each assumption appearing in
(H) in the proof of our existence theorem. We start by considering the convexified
problem (P**) (same ag P) with i}* instead off;) which will admit a solution
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by the Direct method of the Calculus of Variations: every minimizing sequence,
because ofh,), has a weakly convergent subsequencé.inThis fact together
with the sequential weak lower semicontinuity of the cost functional associated to
(P**), the limit function, say, will be a solution to problengP**). Now, the goal

is to modify eachg* in those pointgt, x) for which z*(z, x) locates in the region
whereh, # hi*. Assume for the moment that= 1. Then, it is known thath,)

and the lower semicontinuity @ imply that

[eernp© <@} = e dl. (10)
iel

where such intervals (depending kphare supposed to be disjointoco < ¢; <
d; < +o00, and where runs over a countable sétdepending ork. In addition,
one also ha&;*(c;) = hi(c;), hi*(d;) = hi(d;). We reason for every and for
everyi e I inthe following manner. Looking at the points x) for which z¥(z, x)
belong to the intervalc;, d;[, we modifyz* on this set by forcing to take the values
in the extreme points of the interval without altering the value of the cost integral.
This is done by using Lemma 2.1.

Each intervallc;, d;[ (an open bounded simplex iR) plays the role of the
simplex S¥ in assumption(z3). Unfortunately, in case > 1 the representation
(10) where each intervat;, d;[ is substituted by a simple is not a consequence
of (hy). To see this, assunie= 1 and take as a functioh the minimum of the
parabolas Zrandr?+ 1, and then consider the functian¢) = (|£|) for & € IR2.
Here || denotes the Euclidean norm IR2. On the other hand, the advantage of
putting an inclusion instead of an equality(irs) is exhibited by the next example.
Assume agairl = 1 and take an even functiol satisfiying, besidegh,), the
following properties: there are @ 1, < 1, such that, foi = 1,2, h(r) = h(t;) =
) if0 <t <t h(t) < h@)ifn <t <, andh(t) = h**@) forall r > 1,
with 2™ () > 0. Now, take the functiork given byh(£) = h(|€]), where|¢|
stands for the Euclidean norm. Thug*(¢) = 2**(|€|) and

K={eemry:is) <h(eh | ={s e RL: 0 <18l <ro).

Thus,K is not a countable union of simplices but satisfies the inclusion assumption
required in(k3) as the proposition in next section shows.

3. Proof of the Theorem
(a) We first consider the convexified problem associate@tp
1 1
min M, )R (2 (¢, x))dxdt. (P)
z€Z /(; 0 ; k k

Because of the assumptions on the integrand, the optimal value Hinig,fi-
nite. Take any minimizing sequence’) in Z wherez? = (47, ..., 7). By the
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continuity of everyx, on the compact sef, we can assume that all of them are
bounded from below by a positive constantThus by assumptioz,) and the

de la Vallée-Poussin criterion (see [11, Chapter VII, Theorem 1.3] for instance)
the sequencé&*-?) is equi-integrable fok = 1, ..., [. We now apply the Dunford-

Pettis compactness criterion (same reference as before) to conclude that there exists
a subsequence, still indexed pysuch that*? — z¥in L1(Q, IR"). This implies

Z¥ > 0fork = 1,...,1, and, in particular for every € 10, 1] every Borel set

E C Q, that

t
/ / M (s, ¥) (2P (s, y), vF)dyds
0 E )
N / / J(s. ¥) (s, ). vF)dyds asp — +oo.
0 E

Hence, since the sequenge= (z%7, ..., z"?) isin Z, one obtains for all € 10, 1],
all Borel setk C Q:

/gk(t,y)dy <f f)»k(s,y)(ik(s,y),vk)dyd&
E o JE

Settingu(z, y) = [o A(s, Y){(Z5(s, y), v¥)dyds — g*(t, y), the preceding inequality
becomestu(t, y)dy > 0 forallr € ]0,1[, all Borel setE c Q. Thus, for
everytr € ]0, 1] there exists a null seV(r) C Q such thatu(z, y) > 0 for all
y € Q\N(). It turns out that:(z, y) > O for allt € Qq, for all y € Q\N with
N = J,cp, N(1) (independent of) being a null set, wher@; is the set of rational
numbers inj0, 1[. Sinceu(-, y) is continuous, the latter implies thatz, y) > 0
forallt € 10, 1[, a.e.y € Q. Itfollows that forallz € 10, 1[ (k =1, ...,])

/ (s, X) (25 (s, x), V) ds > g, x), ae x e Q.
0

Consequently = (z, ..., 7') satisfies condition (2). Let us prove the second con-
dition (3). Letx be a Lebesgue density point (see [14, Chapter 3] for instance) in
the interior of Q for the functionsf* andfol M (s, -)2’]‘.(s, yds, k=1,...,1, j =

1, ..., n. The weak convergence of” to z¥ in L1(Q, IR"), as before, implies that
(k=1,..,0, j=1,..n)

1
/ / hi(s, )25 (s, y)dyds
0 JB(x.,e)

1
— / / M (s, y)Z’;(s, y)dyds asp — +oo.
0 B(x,e)

Here,B(x, ¢) is the open ball centred atand radius sufficiently small. By using
the Tonelli-Fubini theorem and the facts thétis in Z and thatx is a density point



162 FABIAN FLORES-BAZAN

for the involved functions, we conclude that

1
/ Me(s, )VEZh(s, x)ds = fl(x) foraexeQk=1,..,1,j=1..n),
0

since the complement of the set of Lebesgue points has measure zero [14]. Thus,
7 = (4 ...,Z) isin Z and clearly it is a solution to problerfP**) because of

the convexity and lower semicontinuity conditions/gf (see [11, Chapter VIII,
Theorem 2.1]) and, > A > 0.

(b) Letz € Z,Z = (z4 ..., 7)) be any solution to probleniP**). For every
k=1,..,1,we setforevery € I;, 0¥ = {(t, x) € Q : 7*(r, x) € SF}, and apply
Lemma 2.1 to obtain a measurable functiohtaking values in ext§~ on 0¥, such
that, for everyi € I;:

0] fol)»k(t,x)wl]-‘(t,x))(gl_c(t,x)dt = folkk(t,x)zk(t,x)XQz_c(t,x)dt for a.e.x in
0 and
(i) for everyt € 10, 1[, we have

f A5, X) (W (s, x), V) x e (s, X)ds
O 1

> / Ae(s, x) (25 (s, x), vk)XEg((s,x)ds fora.ex € Q. (1)
0 1

Putof = 0\ U, 0%, and defineg* : 0 — IR" by
@, x) =3, x)XQé(t, x) + Z wh(r, X)XQf; (t. x).
iely

Clearly, this function is measurable and obviously is integrablg i a finite set.
In casel, is numerable, we reason as follows. Taking into accéigtand the fact
that

1
/ M, ) (Wi, %) x e (1, )dt =
0 1
1
/ M, ), X)) x i (2, x)dt forae xin Q, (12)
0 1

which is a consequence of the affine linearity:pf on everys*, we have for every
m € IN,

xfwﬂﬂu%+§:mﬂ@p<}:/gnww%+m
0 i<m i<m? Qi

(13)
<[Mmm%+m,
0
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with A > 0. Inequality (13) implies that the sequence of functions giveffb%ng
Dicm waQz;, m € IN is equi-integrable. Thus, the Vitali convergence theorem [11,

Chapter VIII, Corollary 1.3] asserts thztt is in LY(Q, IR"). Moreover, it follows
that

1 1
/ Ae(t, x)Z5 (e, x)dt = / Ai(t, x)Z5(¢, x)dt forae x € Q (14)
0 0

and for every € 10, 1]

/ Ae(s, ) (25 (s, x), vVE)ds 2/ (s, ) (35 (s, x), vVF)ds for a.e x € Q.
0 0

Thus,z = (¢4, ..., Z/) is in Z. On the other hand, by recalling that" is affine on
eachS* and sincey, = h}* on each extss¥, (14) implies

1 1
/ / M (t, )i (25 (2, x))dxdt = / / A (t, )R, x))dxdt.
0 Jo 0 JQ

Hence,z = (z%, ..., Z') is a solution to probleniP) sincez is a solution to( P**),
A = A > 0andhf* > hi. Notice that we also conclude that miP**) =
min (P). O

Looking at Parta) of the proof of our theorem, one concludes that, in dgse
is already a convex function for eveky= 1, ..., [, the constraint given by (2) may
be taken as an equality. We single out this result in the following corollary.

COROLLARY. In addition to the assumptions of the previous theorem (without

(h3)) assume also thak, is convex for everg = 1,...,1. Then the problem of
minimizing the integral

1 I
J@@ .2 = / f D ke, )i (22, x))dxdt,
0 Jo

k=1

among all the integrable functiond : [0,1] x Q — IR,k = 1, ..., [, satisfying
the following constraints: for almost all € Q, everyk =1, ..., [;

t
/ Ae(s, X)WV, 25 (s, x))ds = g*(z, x), forallt € 10, 1],
0

1
/ Mt iR xyde = fi(x), j=1,....n,
0
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admits at least one solution.

REMARK 4.1. By virtue of the first part of Remark 2.2, our theorem admits the
variant in which some of the constraints expressed by (2kferl, ..., [, may be
in opposite sense.

The next proposition, proved in [12], implies that the interior éfdimensional
convex compact subset in [R" is the union of countably many relative open
pairwise disjoint simplices (the faces of thedimensional simplices iB§). This
allows us to extend Lemma 2.1 to the case wiSers a convex relative open
bounded subset aR”, and therefore also our main theorem by substitutihg
in assumption(3), by a convex relative open bounded subseRih

PROPOSITION 4.2. Le€ be anrz-dimensional compact convex subset/®f.
Then there exists a countable fam#iyof n-dimensional simplices such that

(@) IntC CcU{S : Sed};
@) intSNnintS" =gif S,5 € $andS £ 5
(iii) extrS C extr C for everyS € 8.

4. Acknowledgements

The author wishes to thank Jean-Pierre Raymond for his kind invitation and hos-
pitality while he was visiting the U.F.R. - MIG, Université Paul Sabatier, Toulouse.

References

1. Amar M., and Mariconda C. (1995), A nonconvex variational problem with constraints, SIAM
J. Control and Optimizatior83(1) 299-307.
2. Arkin V.I. & Levin V.L. (1972), Convexity of values vector integrals, theorems on measurable
choice and variational problems, Russian Math. Sun2yg3) 21-85.
3. Artstein Zvi, (1974), On a Variational Problem, J. Math. Anal. Apfh 404-415.
4. Artstein Zvi, (1980), Generalized solutions to continuous-time allocation processes, Economet-
rica,48(4) 899-922.
5. Aubin J.P. & Frankowska, H. (1990¢t-Valued AnalysiBirkhauser, Boston, Basel, Berlin
6. Aumann R.J., (1964), Markets with a continuum of traders, Econometrica, 32(1 & 2) 39-50.
7. Aumann R.J., (1966), Existence of competitive equilibria in markets with a continuum of
traders, Econometrica, 34(1): 1-17.
8. Aumann R.J. and Perles M., (1965), A Variational Problem Arising in Economics, Journal of
Math. Anal. and Appl., 11 488-503.
9. Berliocchi H. and Lasry J.M., (1973), Integrandes Normales et Mesures Parametrees en Calcul
des Variations, Bulletin de la Société Mathématique de France, 101: 129-184.
10. Clarke F.H., (19900ptimization and Nonsmooth Analys&iAM, Philadelphia.
11. Ekeland I. and Temam R., (197&onvex Analysis and Variational Probleniorth-Holland,
Amsterdam.



OPTIMAL SOLUIONS IN AN ALLOCATION 165

12.

13.

14.

15.

16.
17.

18.

Flores-Bazan F. and Perrotta S., (1997), Non-convex variational problems related to a hy-
perbolic equationTechnical Report 97-19, D.1.M., Universidad de Concepcion. Accepted for
publication in SIAM, J. Control and Optimization.

Flores-Bazan F. and Raymond J.-P., A variational problem related to a continuous-time al-
location process for a continuum of traders, technical Report 99-18, D.I.M. Universidad de
Concepcioén.

Folland G.B., (1984)Real Analysis: Modern Techniques and Their Applicatidwhn Wiley

& Sons, New York, Toronto, Singapore.

Griewank A. and Rabier P.J., (1990), On the smoothness of convex envelopes, Transactions of
the Am. Math. Soc., 322(2) 691-709.

Rockafellar, R.T., (1972;onvex AnalysisPrinceton University Press, Princeton, New Jersey.
Valadier M., (1970), Integration de convexes fermes notamment d’epigraphes inf-convolution
continue, R.I.LR.OR-2, 4 année, 57-73.

Yaari Menahem E., (1964), On the existence of an optimal plan in a continuous-time allocation
process, Econometrica 32(4), 576-590.



